The Hunt For Dark Matter Conference Summary

Dan Hooper
Particle Astrophysics Center
Fermi National Accelerator Laboratory
dhooper@fnal.gov

Fermilab May 12, 2007

An Exciting Time For Dark Matter... A New Kind of Dark Matter Meeting

~20 Excellent plenary talks (only a few others)

~60 Parallel talks - very wide range of topics, from particle physics theory to technical aspects of detector technology

~170-180 Participants!

Quasi-equal emphasis on direct, indirect and collider searches

An Exciting Time For Dark Matter... A New Kind of Dark Matter Meeting

~20 Excellent plenary talks (only a few others)

~60 Parallel talks - very wide range of topics, from particle physics theory to technical aspects of detector technology

~170-180 Participants!

Quasi-equal emphasis on direct, indirect and collider searches

⇒ Makes writing a true summary talk a very difficult task

Hunting For Dark Matter

Hunting For Dark Matter

SUSY DM CANDIDATES

	U(1)	SU(2)	Up-type	Down-type		
Spin	M_1	M ₂	μ	μ	$m_{ ilde{ ilde{ u}}}$	<i>m</i> _{3/2}
2						G
						graviton
3/2		Noutr	olinoo. (.)	Ğ
		Neutr	aiinos: { χ⊧	$=\chi_1, \chi_2, \chi_3, \chi$	4}	gravitino
1	В	W°				
1/2	Ĕ	W 0	$ ilde{H_u}$	$\tilde{H_d}$	ν	
	Bine	Wino	Higgsino	Higgsino		
0			H_u	H _d	v	
					sneutrino	

Axions

CP conservation in QCD by Peccei-Quinn mechanism

For $f_a \gg f_{\pi}$ axions are "invisible" and very light

(Georg Raffelt's Talk)

(Jonathan Feng's Talk)

(Tim Tait's Talk)

LEP'S COSMOLOGICAL LEGACY

 Simple solution: impose a discrete parity, so all interactions require pairs of new particles. This also makes the lightest new particle stable.

Cheng, Low (2003); Wudka (2003)

LEP's Cosmological Legacy:

LEP constraints ↔ Discrete symmetry ↔ Stability

THE "WIMP MIRACLE"

(1) Assume a new (heavy) particle χ is initially in thermal equilibrium:

$$\chi\chi\leftrightarrow ff$$

(2) Universe cools:

$$\chi \chi \neq f$$

(3) χ s "freeze out":

$$\chi\chi \not\equiv ff$$

XENON 10

CDMS II

(See talks by D. McKinsey and S. Golwala)

XENONIO WIMP Search Data

136 kg-days Exposure= 58.6 live days \times 5.4 kg \times 0.86 (ε) \times 0.50 (50% NR)

- WIMP "Box" defined at ~50% acceptance of Nuclear Recoils (blue lines): [Mean, -3σ]
- 10 events in the "box" after all cuts in Primary Analysis
- 6.9 statistical leakage events expected from ER band
- NR energy scale based on 19% constant QF

New XENON 10 Limit (April APS Meeting)

Many Other Experiments in the Running:
Zeplin III, LUX, WARP,
XMASS,CLEAN, DEAP,
...and a few dozen others

Indirect Detection

VERITAS, HESS and MAGIC in operation

GLAST to launch late in 2007

(See Talk By Jim Buckley)

Indirect Detection

Dark Matter - Where Next?

Indirect Detection

PAMELA's Launch- 480 million events!

Will dramatically improve measurement of cosmic positron and antiproton spectra (See Aldo Morselli's Talk)

Indirect Detection

IceCube is 22/80 completed!

IceCube will test WIMPs with large spin-dependent scattering cross sections - complementarity to direct searches

(See Francis Halzen's Talk)

Colliders - The Tevatron

Search for Chargino-Neutralino Production

 Trileptons from chargino-neutralino: flagship analysis for discovery of SUSY at the Tevatron

Also, very interesting results from squark/gluino and sbottom/stop searches (see Jane Nachtman's Talk)

Colliders - The LHC

(see talks by Michael Schmitt and Xerxes Tata)

Colliders - The LHC

- -The LHC is a discovery machine
- -Precision measurements are much more difficult

(see talks by Michael Schmitt, Xerxes Tata and Ted Baltz)

mass/mass splitting	LCC4 value		LHC
$m(\tilde{\chi}_1^0)$	169.1	\pm	17.0
$m(\tilde{\chi}_2^0)$	327.1	\pm	49.
$m(\tilde{\chi}_2^0) - m(\tilde{\chi}_1^0)$	158.0	\pm	-
$m(\tilde{\chi}_3^0) - m(\tilde{\chi}_1^0)$	370.6	\pm	-
$m(\tilde{\chi}_1^+)$	327.5	\pm	-
$m(\tilde{\chi}_{1}^{+}) - m(\tilde{\chi}_{1}^{0})$	158.4	\pm	-
$m(\tilde{\chi}_{2}^{+}) - m(\tilde{\chi}_{1}^{+})$	225.8	\pm	-
$m(\tilde{e}_R) - m(\tilde{\chi}_1^0)$	243.2	±	-
$m(\tilde{\mu}_R) - m(\tilde{\chi}_1^0)$	243.0	\pm	-
$m(\tilde{\tau}_1)$	194.8	\pm	-
$m(\tilde{\tau}_1) - m(\tilde{\chi}_1^0)$	25.7	\pm	-
m(h)	117.31	\pm	0.25
m(A)	419.3	\pm	1.5 *
$\Gamma(A)$	14.8	\pm	-
$m(\tilde{u}_R), m(d_R)$	944.,941.	±	94.
$m(\tilde{s}_R), m(\tilde{c}_R)$	941., 944.	\pm	97.
$m(\tilde{u}_L), m(\tilde{d}_L)$	971., 975.	\pm	141.
$m(\tilde{s}_L), m(\tilde{c}_L)$	975., 971.	\pm	146.
$m(\tilde{b}_1)$	795.	\pm	40.
$m(\tilde{b}_2)$	862.	\pm	86.
$m(\tilde{t}_1)$	716.	\pm	(> 345)
$m(\tilde{g})$	993.	\pm	199.

Benchmark LCC4
Baltz, Battaglia, Peskin and Wizansky

Collider discovery of a long-lived, neutral particle

Collider discovery of a long-lived, neutral particle

Direct/indirect detection needed to confirm the particle is cosmologically stable and abundant

Collider discovery of a long-lived, neutral particle

But will the discovery stand at the supreme court of the ILC?

Direct/indirect detection needed to confirm the particle is cosmologically stable and abundant

Confirmation At The ILC Is Essential!

(See Ted Baltz and Marco Battaglia's talks)

Confirmation At The ILC

UED phenomenology

$$e^+e^- \to \mu_1^+\mu_1^- \to \mu^+\mu^-\gamma_1\gamma_1$$

closely resembles SUSY;

$$e^+e^- \to \tilde{\mu}^+\tilde{\mu}^- \to \mu^+\mu^-\tilde{\chi}_1^0\tilde{\chi}_1^0$$

Nature of new particles can be clearly identified by a spin analysis, based on production properties and decay angles. $(d\sigma)$

-Cosmological Evidence (Max Tegmark)

-Modifications to Gravity (Pedro Ferreira)

-Electroweak Baryogensis (Carlos Wagner)

- -EW Baryogensis can naturally occur in low scale SUSY
- -Within the MSSM, requires a light Higgs and a light stop (and LSP)
- -Models with extended Higgs sectors (nMSSM,etc) are attractive

-Simulations and Structure (Simon White)

-About 60 parallel talks...

Thanks

Organizers:

Dan Bauer

Pasquale Serpico

Andrew Sonnenschein

Marcela Carena

Karen Byrum

Mark Jackson

Fritz DeJongh

DH

Administrative Support

Judy Ripple

Cynthia Sazama

Suzanne Weber

The Fermilab conference office

Sponsors:

The Fermilab Center For Particle-Astrophysics
The Fermi Research Alliance

Thanks For Coming!

Let's use all of the tools we have to solve the puzzle of dark matter!